Contents

- Newton's ring formed by two curved Surface
- Curved surface placed on each other
- Both curved surface contact with each other

Special Cases:

Newton's ring formed by two curved Surface:

Abstract

Consider two curved surface

 radius of curvature R_{1} and R_{2} placed in such a way that they are contact at a point O Then air film of increasing thickness is formed between the two surfaces. Then at particular constant thickness AB interference take place in the form of concentric ring. Suppose that is $\mathrm{n}^{\text {th }}$ ring and radius of that $\mathrm{n}^{\text {th }}$ ring is r_{n}. That $\mathrm{n}^{\text {th }}$ ring will appear dark and bright depend upon path difference between the two reflected ray that comes out to be:- $2 \mu t \cos (r+\alpha)+\frac{\lambda}{2}------------(1)$For normal incidencer $=0$
Angle of inclination $\alpha=$ small
So that $(r+\alpha)=0+$ small $=0$
For air film $\mu=1$

Fhen the path difference between the reflected rays would be

$$
\left.2 t+\frac{\lambda}{2}------\bar{A}----------\frac{1}{A C}-\frac{1}{2}\right)
$$

Now calculate value of $A C$ from fig.1.3.4(a) and $B C$ from 1.3.4(b)
Here $A B=t=(A C-B C)--------------(3)$
Now calculate value of $A C$ from fig.1.3.4(a) and BC from 1.3.4(b)
Taking right angle triangle PQA in this triangle

$$
O P=R_{1}, O Q=A C, P Q=R_{1}-A C, A P=R_{1}, A Q=r_{n}
$$

Applying Pythagoras Theorem we get

$$
\begin{aligned}
& A P^{2}=P Q^{2}+Q A^{2} \quad R_{1}^{2}=\left(R_{1}-A C\right)^{2}+r_{n}^{2} \\
& \quad R_{1}^{2}=R_{1}^{2}+A C^{2}-2 R_{1} A C+r_{n}^{2} \\
& =>0=A C^{2}-2 R_{1} A C+r_{n}^{2}
\end{aligned}
$$

Now AC is very small as compared to R_{1} and r_{n}
So in that case $A C^{2}$ can be neglected then we get

$$
0=-2 R_{1} A C+r_{n}^{2} \text { or } r_{n}^{2}=2 R_{1} A C
$$

$$
\text { Or } \quad A C=\frac{r_{n}^{2}}{2 R_{1}}
$$

Similarly we can calculate value of $B C$

- Now taking right angle triangle PQB in this right angle triangle:

$$
O P=R_{2}, P Q=R_{2}-B C, Q B=R_{2}, \quad Q B=r_{n}
$$

Applying Pythagoras Theorem we get

$$
\begin{aligned}
& P B^{2}=P Q^{2}+Q B^{2} \quad R_{2}^{2}=\left(R_{2}-B C\right)^{2}+r_{n}^{2} \quad R_{2}^{2}=R_{2}^{2}+B C^{2}-2 R_{1} B C+r_{n}^{2} \\
& =>0=B C^{2}-2 R_{1} B C+r_{n}^{2}
\end{aligned}
$$

- Now Now BC is very small as compared to R_{2} and r_{n}

So in that case $B C^{2}$ can be neglected then we get $0=-2 R_{2} B C+r_{n}^{2}$ or $r_{n}^{2}=2 R_{2} B C$ Or $\quad B C=\frac{r_{n}^{2}}{2 R_{2}}$ Putting value of $A C$ and $B C$ in equation (3) we get $A B \quad t=A B=(A C-B C)=\frac{r_{n}^{2}}{2 R_{1}}-\frac{r_{n}^{2}}{2 R_{2}}$

Putting value of $t=A B$ in Eq. (2)we get value Path Diffrence

$$
\begin{equation*}
\frac{r_{n}^{2}}{2 R_{1}}-\frac{r_{n}^{2}}{2 R_{2}}+\frac{\lambda}{2}-------------- \tag{4}
\end{equation*}
$$

Thus the ring will appear bright only when path-difference between both of the reflected ray $=\mathrm{n} \lambda$

$$
\begin{aligned}
& 2\left(\frac{r_{n}^{2}}{2 R_{1}}-\frac{r_{n}^{2}}{2 R_{2}}\right)+\frac{\lambda}{2}=n \lambda \\
& r_{n}^{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\frac{\lambda}{2}=n \lambda \\
& r_{n}^{2}\left(\frac{R_{2}-R_{1}}{R_{2} R_{1}}\right)=n \lambda-\frac{\lambda}{2} \\
& r_{n}^{2}\left(\frac{R_{2}-R_{1}}{R_{2} R_{1}}\right)=(2 n-1) \frac{\lambda}{2}
\end{aligned}
$$

$$
r_{n}^{2}=\frac{\lambda R_{2} R_{1}(2 n-1)}{2\left(R_{2}-R_{1}\right)} \quad \text { But } \quad D_{n}=2 r_{n} \Rightarrow r_{n}=\frac{D_{n}}{2}
$$

Putting value of r_{n} and get diameter of bright ring

$$
\frac{D_{n}^{2}}{4}=\frac{\lambda R_{2} R_{1}(2 n-1)}{2\left(R_{2}-R_{1}\right)}=>D_{n}^{2}=\frac{2 \lambda R_{2} R_{1}(2 n-1)}{\left(R_{2}-R_{1}\right)}
$$

$$
\begin{aligned}
& \text { And the ring will appear dark only when } \\
& \text { Path diff. }=2 t+\frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2} \\
& 2\left(\frac{r_{n}^{2}}{2 R_{1}}-\frac{r_{n}^{2}}{2 R_{2}}\right) \frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2} \\
& r_{n}^{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2} \quad r_{n}^{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{(2 n+1) \lambda}{2}-\frac{\lambda}{2} \\
& r_{n}^{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=n \lambda \quad r_{n}^{2}\left(\frac{R_{2}-R_{1}}{R_{2} R_{1}}\right)=n \lambda \quad r_{n}^{2}=\frac{R_{2} R_{1} n \lambda}{\left(R_{2}-R_{1}\right)}
\end{aligned}
$$

But $D_{n}=2 r_{n}=>r_{n}=\frac{D_{n}}{2} \quad$ Putting value of r_{n} and get diameter of dark ring
$=>D_{n}^{2}=\frac{4 R_{2} R_{1} n \lambda}{\left(R_{2}-R_{1}\right)}$

When both curved surface are placed in such a way that whose convex surface are contact at a point. Then air film of increasing thickness is formed between the two curved surfaces. Then at particular constant thickness AB interference take place in form of concentric ring. Suppose that it is nth ring whose radius is r_{n} that $n^{\text {th }}$ ring will appear dark or bright depend upon path difference between the two reflected rays that is

$$
2 t+\frac{\lambda}{2}--------------------(5)
$$

Here $t=A B=A C+B C \quad$ value of $A C$ and $B C$ are
$A C=\frac{r_{n}^{2}}{2 R_{1}}$ and $B C=\frac{r_{n}^{2}}{2 R_{2}}$
Putting value of $A C$ and $B C$ in eq.(5) we get
$t=A B=(A C+B C)=\frac{r_{n}^{2}}{2 R_{1}}+\frac{r_{n}^{2}}{2 R_{2}}$
Putting value of $t=A B$ in Eq.(2)
we get value Path Diffrence
$\frac{r_{n}^{2}}{21}+\frac{r_{n}^{2}}{2 R^{2}}+\frac{\lambda}{2}$

- ${ }^{2} R_{12}$ the $R_{\text {ging }}{ }^{2}$ will appear bright only when path-difference between both of tue reflected ray $=\mathrm{n}$

$$
\begin{aligned}
& 2\left(\frac{r_{n}^{2}}{2 R_{1}}+\frac{r_{n}^{2}}{2 R_{2}}\right)+\frac{\lambda}{2}=n \lambda \quad r_{n}^{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{\lambda}{2}=n \lambda \quad r_{n}^{2}\left(\frac{R_{2}+R_{1}}{R_{2} R_{1}}\right)=n \lambda-\frac{\lambda}{2} \\
& r_{n}^{2}\left(\frac{R_{2}+R_{1}}{R_{2} R_{1}}\right)=(2 n-1) \frac{\lambda}{2} \quad r_{n}^{2}=\frac{\lambda R_{2} R_{1}(2 n-1)}{2\left(R_{2}+R_{1}\right)}
\end{aligned}
$$

But $D_{n}=2 r_{n}=>r_{n}=\frac{D_{n}}{2}$
Putting value of r_{n} and get diameter of bright ring

$$
\frac{D_{n}^{2}}{4}=\frac{\lambda R_{2} R_{1}(2 n-1)}{2\left(R_{2}+R_{1}\right)}=>D_{n}^{2}=\frac{2 \lambda R_{2} R_{1}(2 n-1)}{\left(R_{2}+R_{1}\right)}
$$

- And the ring will appear dark only when Path diff. $=2 t+\frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2}$

$$
\begin{aligned}
& 2\left(\frac{r_{n}^{2}}{2 R_{1}}+\frac{r_{n}^{2}}{2 R_{2}}\right) \frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2} \quad r_{n}^{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{\lambda}{2}=\frac{(2 n+1) \lambda}{2} \\
& r_{n}^{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=n \lambda \quad r_{n}^{2}\left(\frac{R_{2}+R_{1}}{R_{2} R_{1}}\right)=n \lambda \quad r_{n}^{2}=\frac{R_{2} R_{1} n \lambda}{\left(R_{2}+R_{1}\right)}
\end{aligned}
$$

But $D_{n}=2 r_{n}=>r_{n}=\frac{D_{n}}{2} \quad$ Putting value of r_{n} and get diameter of dark ring

$$
D_{n}^{2}=\frac{4 R_{2} R_{1} n \lambda}{\left(R_{2}-R_{1}\right)}
$$

